
Success, sensitivity and
unbelievable quality of LLM

code generation
Andrei Paleyes and Diana Robinson

Artificial Intelligence Research Group Talks, Computer Lab
June 2025

“Because of these quality issues, researchers have begun to study
end-user programming practices and invent new kinds of technologies
that collaborate with end users to improve software quality. This
research area is called end-user software engineering (EUSE).“

Ko et al., “The State of the Art in End-User Software Engineering”, ACM Computing Surveys, 2011

- Ko et al., 2011

End-user software engineering

“Our vision is that by 2030 end users will build and deploy
whole apps just from natural requirements. We call this
requirements-driven end-user software engineering.“

Robinson, Cabrera, Lawrence, Gordon, Mennen, “Requirements are All You Need: The Final Frontier for End-User Software Engineering”, International
Workshop on Software Engineering 2030, 2024

- Robinson et al., 2024

End-user software engineering

How to build reliable LLM coding pipelines?

That’s one way…

And another, more solid one

Same
requirements

expressed
differently

RQ: How sensitive is LLM code generation to
variations in requirements?

Overview of evaluation

Augment

a → s speak → talk

 1. Typos 2. Synonyms

Write a program → Develop an app

 3. Paraphrasing

As an English teacher with basic knowledge of computers…

4. Personas

Edward Ma, NLPaug, https://github.com/makcedward/nlpaug

https://github.com/makcedward/nlpaug

Compare

❌Sacre BLEU ❌Jaccard similarity ❌BERT score

✔TSED

Evtikhiev et al., “Out of the Bleu: how should we assess quality of the code generation models?”, Journal of Systems and Software, 2023
Song et al., “Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance”, ACL 2024

TSED = Tree Similarity of Edit Distance

Pawlik and Augsten, “Efficient computation of the tree edit distance”. ACM Transactions on Database Systems (TODS), 2015
Song et al., “Revisiting Code Similarity Evaluation with Abstract Syntax Tree Edit Distance”, ACL 2024

Abstract Syntax Tree

one_plus_two = 1+2

Alessandro Finamore, “Abstract Syntax Trees in Python”, https://pybit.es/articles/ast-intro/

Overview of evaluation

Results

Results

Personas - motivation

RQ 1: How does user background impact the way someone describes a prompt
for a coding task?

RQ2: What difference does this type of prompt augmentation make to the
generated code?

Personas - approach

Harold - english teacher

Ethan - astrophysicist

John - junior dev

Brad - principal dev

Image credit: ChatGPT, https://www.dreamstime.com/illustration/astrophysicist-cartoon.html, Perplexity

https://www.dreamstime.com/illustration/astrophysicist-cartoon.html

Personas – prompt difference results

- Example difference between English
teacher persona and principal software
developer:

- “Can you provide me with a computer program
that mimics a basic calculator?” (Harold)

vs
- “Create a simple web service with an API endpoint

that performs calculations.” (Brad)

El-Assady et al., “Lingvis.io - a linguistic visual analytics framework”, ACL System Demonstrations, 2019

Personas - code difference results

● English teacher - basic code, lots of branching
● Astrophysicist - basic code, input and constraint validation
● Junior dev - OOP, use of databases
● Principal dev - data integrity, deployment considerations, KPI metrics

Aside: Claude writes ~3x more code than ChatGPT

LLMs are somewhat sensitive. So what?

● Full procedure
● Behavior is nuanced between LLMs
● Input data matters!...
● …as well as type of augmentation

P, Sendyka, Robinson, Cabrera, Lawrence “Prompt Variability Effects On LLM Code Generation”, arxiv:2506.10204, 2025

Aside on typos

Can you solve this?

Write Python code to solve the following problem:

hJFFm two a8Gh4E se5Zuz GIJe! and mj<Cq of q&Xs m and n
%FE)2Xt(G#Oy, t$5 tDh the k$rJQH of the two EPEˆ@W xGeX %E.
The (gSFq<: run F(K@ DkN(;ss9r7 W Bij>v be O (log (m + n)).
K@jb$T = = n 0 <= m <= w000 0 <= n <= w000 1 <= m + n <=
1000 - 106 <= GHnZ@ [i], jk,e@ [i] <= 106

Can you solve this?

Given a signed 32-bit integ

● Subtle changes can go unnoticed in automated pipelines
● Researchers: extra care when evaluating performance
● Developers: extra testing when synthesizing

LLMs can match patterns. So what?

Sendyka, P, Cabrera, Robinson, Lawrence, “LLM Performance for Code Generation on Noisy Tasks”, arxiv:2505.23598, 2025

Next steps

● Analyse actual pipelines, not only one-shots
● Personas → real humans
● Beyond code

Further:

● LLMs for software architecture
● LLMs for self-sustaining systems
● VibeSafe

Cabrera, Bastidas, Schooling, Lawrence, “The Systems Engineering Approach in Times of Large Language Models”, HICSS-58, 2024
Cabrera, P, Lawrence, “Self-sustaining Software Systems (S4): Towards Improved Interpretability and Adaptation”, SATrends, 2024

Team

With thanks to

● Hongyu Zhou
● Andy Gordon
● Lars Mennen
● Viviana Bastidas
● Jennifer Schooling

Diana Robinson

Christian CabreraRadzim Sendyka

Neil
Lawrence

AP

Questions?

https://mlatcl.github.io/

ap2169@cam.ac.uk

dmpr3@cam.ac.uk

https://mlatcl.github.io/
mailto:ap2169@cam.ac.uk
mailto:dmpr3@cam.ac.uk

