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Part I – Dataflow and Streams
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Dataflow research at ML@CL
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Open Source: Seldon Core
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Inference graph
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Pipelines
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apiVersion: mlops.seldon.io/v1alpha1

kind: Pipeline

metadata:

 name: road-counter

spec:

 steps:

   - name: vectorize

   - name: faulty_image_filter

     inputs:

     - vectorize.outputs

   - name: object_detection

     inputs:

     - vectorize.outputs

     - faulty_image_filter.outputs

. . . . .

 output:

   steps:

   - counter

7



Core V1 - Central orchestration
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Dataflow architecture
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Dean, J. & Ghemawat, S. (2008). MapReduce: simplified data processing on large clusters. Communications of the ACM, 51(1), 107-113.



Dataflow vs control flow
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“In control flow, the processor follows 
explicit order, executing instructions one 
after another. In dataflow, by contrast, an 
instruction is ready to execute as soon as 
all its inputs are available.”

M. Schwarzkopf, The Remarkable Utility of Dataflow Computing
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https://www.sigops.org/author/malte/


Dataflow features
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Separation of data 
and operations

Data as a first 
class citizen

Dataflow graph of 
the entire system

Decentralisation
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Dataflow and inference graph
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Role of streaming in dataflow
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Control plane
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Part II – Implementation



Tech Stack — Constraints
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OSS Platform agnostic Lightweight
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Tech Stack — Contenders
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Pub/Sub – Multiplexing Pipelines
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Pub/Sub – Extending Pipelines
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Pub/Sub – Repeatable Streams
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Tech Stack — Choices
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Anatomy of a Topic Name

22

<prefix>.<namespace>.<pipeline|model>.<name>.<inputs|outputs>

seldon.default.pipeline.foo.inputs

seldon.recommendations.model.bar.outputs

<prefix>.<namespace>.errors.errors

ml.default.errors.errors
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Anatomy of an Inference Message
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Open Inference Protocol
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Open Inference Protocol – Batching
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Dataflow Operations – Topic Chaining
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Dataflow Operations – Tensor Projection
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Dataflow Operations – Batching
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Dataflow Operations – Inner Join
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Dataflow Operations – Outer Join

30 30

Dataflows for machine learning operations



31 31

Dataflow Operations – Any Join
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Dataflow Operations – Triggers
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Core v2 Pipeline =       KStream Topology

Topologies
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apiVersion: mlops.seldon.io/v1alpha1

kind: Pipeline

metadata:

 name: road-counter

spec:

 steps:

   - name: vectorize

   - name: faulty_image_filter

     inputs:

     - vectorize.outputs

   - name: object_detection

     inputs:

     - vectorize.outputs

     - faulty_image_filter.outputs

...

val builder = StreamsBuilder()

builder

.stream(inputTopic.topicName, consumerSerde)

.filterForPipeline(inputTopic.pipelineName)

...

val topology = builder.build()



Pipeline Allocation – 1 Topology = 1 Engine
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Pipeline Allocation – Shared Engines
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Pipeline Allocation — Threads
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How Many Is Too Many?
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How Many Is Too Many?
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KSQL Limitations in Confluent Cloud

Kafka Summit 2022 - Modular Topologies 

KIP-809 (Modular Topologies) 

https://docs.confluent.io/cloud/current/ksqldb/overview.html#limitations-for-ksql-cloud-in-ccloud
https://www.confluent.io/en-gb/events/kafka-summit-london-2022/using-modular-topologies-in-kafka-streams-to-scale-ksqldbs-persistent/
https://cwiki.apache.org/confluence/pages/viewpage.action?pageId=199527406


Advanced ML Applications
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Challenges
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Dynamism Scalability Variety



Thanks for listening!
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The Seldon Core v2 Team

hello@seldon.io

Core v2 on GitHub Team

Clive Cox
CTO

Rafal Skolasinski
Machine Learning Engineer

Alex Rakowski
Software Engineer

Sherif Akoush
MLOps Engineer

Adrian Gonzalez-Martin
Machine Learning Engineer

Andrei Paleyes
MLOps Researcher

Contact us:  

mailto:hello@seldon.io

