Challenges in Deploying Machine Learning What is rarely talked about at ML conferences

Andrei Paleyes, University of Cambridge

Industry Expert Insights, Cambridge Spark

August 2021

About myself

- ► A software engineer for a decade...
- ... including few years deploying ML in Amazon
- Now PhD student with Neil Lawrence, ML@CL group, University of Cambridge
 - ▶ People think we do ML, but we really mostly do software systems research

ML Adoption

Bright side

▶ ML adoption in businesses growth 25% year-to-year

Dark side

- ▶ Over 60% of companies report difficulties
- ▶ Lots of failures: 1 in 4 companies report 50% failure rate

The questions

Where do the challenges arise? What stages of the deployment cause concerns?

Hence the paper

Challenges in Deploying Machine Learning: a Survey of Case Studies

- With Raoul-Gabriel Urma and Neil D. Lawrence
- Accepted to ML-Retrospectives, Surveys & Meta-Analyses @ NeurIPS 2020 Workshop
- Under review in one of ACM journals
- Available on arXiv

How to answer it?

- Fix deployment workflow definition. We use Ashmore et al. 2019.
- 2. Review existing literature on deployments.
- 3. Identify practical challenges that were reported.
- 4. Map them to the ML deployment workflow steps.
- 5. Analyze and draw conclusions.

[&]quot;Assuring the machine learning lifecycle: Desiderata, methods, and challenges", Ashmore et al., 2019

Literature

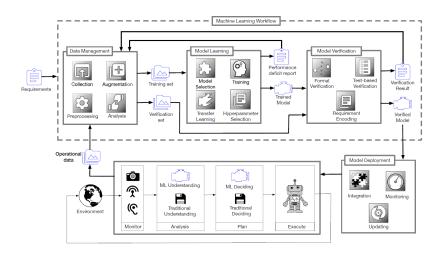
Types:

- Case studies
- Reviews of ML applications in a field
- Lessons learned
- Interview studies among practitioners
- ► Regulations

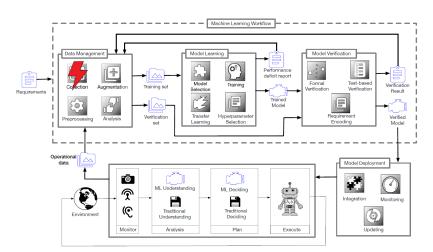
Conditions:

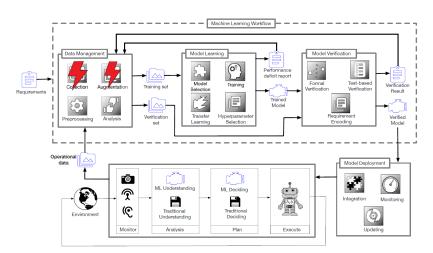
- Not older than 5 years
- All industries
- ► Don't ignore blog posts

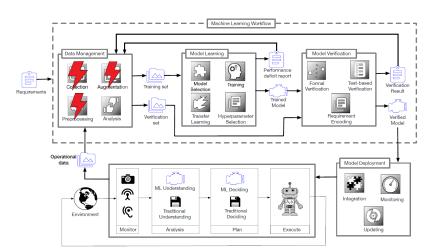
ML workflow

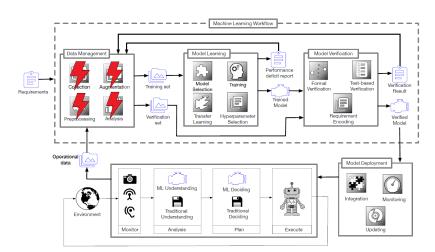


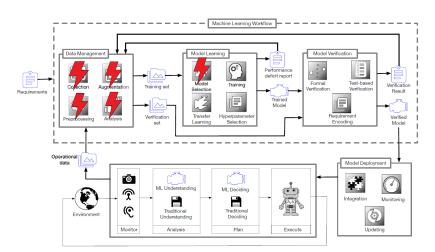
[&]quot;Assuring the machine learning lifecycle: Desiderata, methods, and challenges", Ashmore et al., 2019

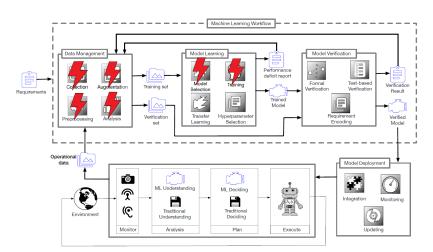


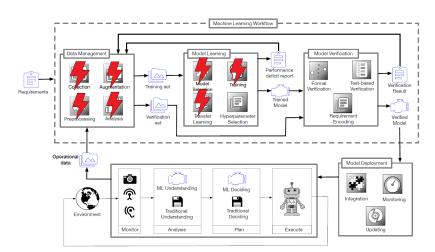


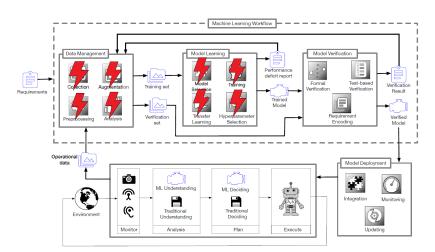


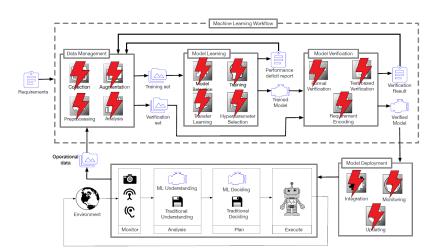












Don't forget cross-cutting aspects!

- Ethics
- ► End users' trust
- Security

Data management

Data collection	Data discovery
Data preprocessing	Data dispersion
	Data cleaning
Data augmentation	Labeling of large volumes of data
	Access to experts
	Lack of high-variance data
Data analysis	Data profiling
	Data preprocessing Data augmentation

Model learning

Resource-constrained environme Interpretability of the model	
Interpretability of the model	nts
Training Computational cost	
Environmental impact	
Hyper-parameter selection Resource-heavy techniques	
Hardware-aware optimization	

Model Verification

Model verification	Requirement encoding	Performance metrics
		Business driven metrics
	Formal verification	Regulatory frameworks
	Test-based verification	Simulation-based testing

Model Deployment

Model deployment	Integration	Operational support
		Reuse of code and models
		Software engineering anti-patterns
		Mixed team dynamics
	Monitoring	Feedback loops
		Outlier detection
		Custom design tooling
	Updating	Concept drift
		Continuous delivery

Cross-cutting aspects

Cross-cutting aspects	Ethics	Country-level regulations
		Focus on technical solution only
		Aggravation of biases
		Authorship
		Decision making
	End users' trust	Involvement of end users
		User experience
		Explainability score
	Security	Data poisoning
		Model stealing
		Model inversion

Conclusions

There is no single "bottleneck" stage. ML deployment projects face serious challenges every step of the way, from data collection to model monitoring.

It is worth ML community's time and focus to think about these challenges.

Reports are scarce. Lots of knowledge goes unpublished. Please share your practical experience more!

What can be done? - Tools

- ▶ Cloud platforms. Examples: AWS SageMaker, AzureML, TensorFlow TFX, MLflow
- Quality assurance. Example: CheckList for NLP
- Weak labeling. Examples: Snorkel, Snuba, cleanlab

Pros: specific tool for specific problem

Cons: dependencies management, maintenance

What can be done? - Holistic approaches

- ▶ Data Oriented Architectures, Neil Lawrence, 2019
- ► Technology Readiness Levels for AI & ML (TLR4ML), Alex Lavin et al, 2020
- Data meshes, Zhamak Dehghani, 2019
- Cookbooks, for example Rules of machine learning: Best practices for ML engineering, Martin Zinkevich, 2017

Pros: ML first mindset **Cons**: big investment

Summary

ML deployment is hard Every part of the workflow presents its own challenges Some aspects affect the whole process There are tools and approaches that can help

https://paleyes.info
https://mlatcl.github.io
Get in touch: ap2169@cam.ac.uk