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About myself

> A software engineer for a decade...

» ... including few years deploying ML in Amazon
» Now PhD student with Neil Lawrence, ML@CL group,
University of Cambridge

» People think we do ML, but we really mostly do software
systems research



ML Adoption

Bright side
» ML adoption in businesses growth 25% year-to-year

Dark side
» Over 60% of companies report difficulties

» Lots of failures: 1 in 4 companies report 50% failure rate

“Global Al Survey...", McKinsey, 2019
“Artificial Intelligence Global Adoption Trends and Strategies”, IDC, 2019



The questions

Where do the challenges arise? What stages of the deployment
cause concerns?



Hence the paper

Challenges in Deploying Machine Learning: a Survey of Case
Studies

» With Raoul-Gabriel Urma and Neil D. Lawrence

» Accepted to ML-Retrospectives, Surveys & Meta-Analyses @
NeurlPS 2020 Workshop

» Under review in one of ACM journals

» Available on arXiv



How to answer it?

1. Fix deployment workflow definition. We use
Ashmore et al. 2019.

Review existing literature on deployments.
Identify practical challenges that were reported.
Map them to the ML deployment workflow steps.

AR

Analyze and draw conclusions.

“Assuring the machine learning lifecycle: Desiderata, methods, and
challenges”, Ashmore et al., 2019



Literature

Types:
> Case studies
Reviews of ML applications in a field

>

» Lessons learned

» Interview studies among practitioners
>

Regulations

Conditions:
» Not older than 5 years
» All industries
» Don't ignore blog posts



ML workflow
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Don't forget cross-cutting aspects!
» Ethics
» End users’ trust

» Security



Data management

Data management

Data collection

Data discovery

Data preprocessing

Data dispersion
Data cleaning

Data augmentation

Labeling of large volumes of data
Access to experts
Lack of high-variance data

Data analysis

Data profiling




Model learning

Model learning

Model selection

Model complexity
Resource-constrained environments
Interpretability of the model

Training

Computational cost
Environmental impact

Hyper-parameter selection

Resource-heavy techniques
Hardware-aware optimization




Model Verification

Model verification

Requirement encoding

Performance metrics
Business driven metrics

Formal verification

Regulatory frameworks

Test-based verification

Simulation-based testing




Model Deployment

Model deployment

Integration

Operational support

Reuse of code and models
Software engineering anti-patterns
Mixed team dynamics

Monitoring

Feedback loops
Outlier detection
Custom design tooling

Updating

Concept drift
Continuous delivery




Cross-cutting aspects

Cross-cutting aspects

Ethics

Country-level regulations

Focus on technical solution only
Aggravation of biases
Authorship

Decision making

End users’ trust

Involvement of end users
User experience
Explainability score

Security

Data poisoning
Model stealing
Model inversion




Conclusions

There is no single “bottleneck” stage. ML deployment projects
face serious challenges every step of the way, from data collection
to model monitoring.

It is worth ML community’s time and focus to think about these
challenges.

Reports are scarce. Lots of knowledge goes unpublished. Please
share your practical experience more!



What can be done? - Tools

» Cloud platforms. Examples: AWS SageMaker, AzureML,
TensorFlow TFX, MLflow

» Quality assurance. Example: CheckList for NLP
> Weak labeling. Examples: Snorkel, Snuba, cleanlab

Pros: specific tool for specific problem
Cons: dependencies management, maintenance



What can be done? - Holistic approaches

» Data Oriented Architectures, Neil Lawrence, 2019

» Technology Readiness Levels for Al & ML (TLR4ML), Alex
Lavin et al, 2020

» Data meshes, Zhamak Dehghani, 2019

» Cookbooks, for example Rules of machine learning: Best
practices for ML engineering, Martin Zinkevich, 2017

Pros: ML first mindset
Cons: big investment



Summary

ML deployment is hard

Every part of the workflow presents its own challenges
Some aspects affect the whole process

There are tools and approaches that can help

https://paleyes.info
https://mlatcl.github.io
Get in touch: ap2169@cam.ac.uk
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